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The one-dimensional electrohydrodynamic flow is considered in a retarding 
electric field when, owing to the inertia of charged particles, it is necessary 

to use the complete equation of momenta for the charged component. It is 
shown that in spite of the negligibly small relative volume occupies by particl- 
es in the initial cross section of the stream, there is a section in which particl- 
es move at 

u , and the dispersed phase of density ps con- 

sisting of particles of radius a, of density pso = const and electric charge Q, 
flowing at velocity U, . The number of particles in a unit of volume is IL,. At 
the cross section x = 0 the gas velocity is u = U = con&, and the dispersed 

phase density and velocity are, respectively, pso and us0 . This means that the 
gasdynamic circuit contains means for maintaining constant the velocity of gas at 
various intensities of phase interaction and that a source of charged particles which 

ensures the specified characteristics pso and us0 existence at the cross section 

x = 0. A longitudinal electric field E which is the sum of the external E, 
and the induced Et electric fields is generated between the emitter at X = 0 and 

the collector of charged particles at x = L downstream. The boundary condition 

for E is specified by E. at z = 0. For low induced field throughout the inter- 
electrode space the condition .& - E. is specified. Below we consider flows in 
which the dispersed phase is subjected to retardation by the electric field. 

The system of equations that define the one-dimensional flow of a two-phase 

medium is of the form [l, 21 
I 

PSUSUS m7 -CZp .i p,rC$ (U-U,) ;- p&!Y? 

puu’ = - (1 -a) p’ -p&C+ (U - U,) 
(1.1) 
(1.2) 

osu, = pson,o, Qu m== oouo (1.3) 
p mu p0 (1 -a), ps =~ pza (1.4) 
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E’ = 4nxp, 
u,(O) = uso, a (0) = a0, u (0) = uo, E (0) --_ EO 

(1.5) 
(1.6) 

U= + xasns, - 9~ %_Q k = 2a2pso a - n, m = + na3pso (1.7) 

where p is the dynamic viscosity coefficient of the carrier phase, Cc is the volume 
concentration of the dispersed phase, m is the mass of charged particleand the prime 
denotes differentiation with respect to variable 5. Equations (1.1) and (1.2) are 

the equations of momenta of the dispersed and carrier phases, respectively, (1.3) are 
the equations of con~~ty, Eqs. (1.4) establish the relation between the phase densit- 
ies of media, Eq, (1.5) defines the induced electric field, and the relations (1.6) 
provide the initial conditions. Parameter 11 is generally a function of the Reynolds 
number determined by the difference of velocities 1 u - usI and concentration a. 
The presence of function ‘II, (a) is due to that in a fairly large concentration of 
particles their hydrodynamic drag differs from that of a single particle in an unbound- 
ed stream. The case of q = 1 corresponds to the Stokes law of drag of an isolat- 
ed particle. 

The term ps’ which is related to the presence of the proper particle pressure ps 
produced by particle collisons in the case of their considerable concentration is omit- 

ted in equation (1.1). Assuming, by analogy with the kinetic theory of gases, pp = 
n,KZ’,, where K is the Boltzmann constant and ?‘, the “kinetic” temperature of 

particles, for the relative magnitude of the term pi we obtain the estimate 

ps , I I ps %TS 3 =‘, i 
ap’ 

---- 
cp UNgT 

T, c<i 
-XT Ng”” -7 4 0.8) 

where the relation p = N,KT with N, denoting the number of microparticles 
(molecules, atoms, ions) in a unit of volume. Estimate (1.8) was obtained for Ng = 
1Or9 cmm3 and a = 10 pm and shows that in a wide range of T, the proper 
pressure can be neglected. 

It should be noted that the induced electric field determined with the use of Eq. 

(1.5) owing to finite dimensions of particles, generally differs from the true electric 
field which must be calculated on the basis of solution of the electrostatic problem for 
a system consisting of many electrically charged bodies of finite dimensions. Certain 
methods of solving that problem appeared in [S], To substantiate Eq. (1.5) we evalu- 
ate the ratio B of force Q2 / D2 exercised on a particular particle by the particle 
nearest to it (D is the distance between the centers of particles) to the force QE, 
in which E = Em -f- Ei. We have 

B Q 3 E” aa 

w=aaEoD= -- E, 0s ' Q-3E"a2 

&-_%_ Q I D 
a - D”E+ 4xn,DaLQ -471~’ n, - D-3 

(1.9) 

The formula for the evaluation of the limit charge Q of a particle of radius a 
imparted to the particle by the *charging” field E” [4] and, also, the approximate 

f ormut that links particle concentration ?& with distance D, are used in the 

above formulas. The parameter L is the characteristic dimension of the region in 
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which charges are concentrated. The wide range of conditions under which the neces- 
sary COudition B = max,(B,, Bi) < f is satisfied, is readily seen. 

Let the flow at cross section x = 0 be defined by the following conditions 
(obtainable in actual applications) : n,, = IO' cm+, Es = 10 kw/cm , TJ - 
103 cm/s , us0 z U; a = 10e3 cm, pa0 = 5 gm cm+, p’ = 10-3 gm cm+, 

p z 2.10-* gm/cms, L = 5 cm. In this case the basic dimensionless paramet- 
ers of the problem have the fo~owing values: 

(1” 10) 

Parameters ‘G and M are ratios of the inertial terms and of electrical force, res- 
pectively, to force F of interaction between phases in the momentum equation (1.1) 

for the dispersed phase, parameter s is the ratio of force F to the remaining terms 
of Eq* (1.2) for the carrier phase, and parameter N defines the relative intensity of 
the induced electric field. The relation between charge Q and field 6' used in 

estimates (1.10) is the same as in (1.9). It follows from (1.10) that the volume con- 
centration of the charged phase and its effect on the motion of the neutral phase may, 
at least in the initial stage of motion, be neglected without appreciably affecting ac- 

curacy (%<1, S<S). In the first approximation the induced electric field 

Ei is u~mport~t (N < 1). However the flow determined in such approximation 

in the presence of the external retarding field E, results, as shown below, in errone- 
ous results. This is associated with some particular features of flow in regions where 
the dispersed phase velocity is low. Hence it is necessary to take into account in 
such regions the finite volume concentration of particles in spite of its negligibly small 

magnitude at cross section + = 0. 
Below we consider various models of flow (in ascending order of complexity) that 

can be used for defining flows on the basis of estimates (I., 10). The results of their 
application are compared with data obtained by “exact” calculation based on the 
solution of the complete system of Eqs. (1.1) - (1.6). The structure of regions with 
abrupt change of parameters of the two-phase stream is investigated. 

2. Model a zz 0, p. I p < i, N = 0. in this case the presence of 
charged particles does not affect the motion of gas whose velocity is uniform through- 

out the flow region (u G U). The volume of charged particles is negligibly small, 

and the flow takes place in the specified external electric field E, = %r, which 

we assume constant and directed against the stream (4, < 0). From (1.1) - 

(1.6) we obtain the equation 

WJ8 ’ = ib# (U - u,) + x&t us (0) = use (2.11 

whose solution for 7c, = 1 and condition (--xE, i! (kU) - 1) > 0 (when the 
retarding effect of the electric field on particles exceeds that of “dragging” by the 
neutral medium) is of the form 
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(2.2) 

q=- xE, + kU 
kU 

Formula (2.2) shows that the velocity of particles becomes zero when E = E,,’ 

= z lqln (q I (qi + 7)) + &I, and the solution cannot be continued into region 

E > Eo’. 
When using this model it is necessary either to locate the runoff of charged partic- 

les at cross section X = x()+ or to investigate the possibility of reversal of the 
motion of particles after their stopping at x = X0+. Jn the latter case the velocity 

u, = V, of particles moving in the reverse direction is also determined by the solu- 

tion of Eq. (2.1) with the boundary condition V, (x0+) = 0. The “reverse”particles 
trajectory is not the same as defined in (2.2), and the velocity V, at cross section 

X = 0 is lower than the initial velocity uSO. The densities ps and R, ofthe 
direct and reverse streams of charged particles are determined by the conditions 
psu, = pSOuSo, R,v, = - pS&so . As x 3 x0+ the densities ps and R, 

increase as (x0+ - x)~I~. The distribution of pS and R, can be used for cal- 
culating (as the next following approximation) the induced electric field. The latter 
proves to be continuous when passing through the cross section x = X0+ at which 

no surface charge is generated, since 

fim 7 (Q,, + R,)ds = 0 
E-0 JC~,+-..E 

The derived solution which for the proposed model is “exact”, from the point of 
view of the general formulation of the problem proves to be incorrect. This is due 
to the assumption that the volume concentration is zero up to the cross section x = 

X0+, while in the close proximity of that section, where according to (1.3) the 

phase density of particles becomes considerable and their volume concentration assum- 

es finite values. The abrupt increase of Cc when the two-phase medium approaches 
cross section 5 = X0+ is accompanied by velocity increase of the carrier phase 
owing to the decrease of the effective cross section of flow (the stream “contraction” 

effect), Moreover it is necessary to take into account in the right-hand side of the 
equation of momenta for the charged phase with finite a, the term -a$ which 
represents the additional force directed along the X -axis. These effects (friction 
force increase owing to the increase of velocity ti of the carrier medium and the 
appearance of force -a$) substantially alter the pattern of motion. The possibili- 

ty of particles passing through cross section x = X0+ emerges. Hence the investiga- 

tion of the flow pattern near t == X0+ must use a model which takes into account 

the finite particle concentration G1. 

3, M o d e 1 a =Jz 0, N = 0. Under these conditions the parameters of 
both components undergo changes, and the flow is defined by the system of Eqs. (1.1) 

- (l..4)* and (1.6) in which E = E. = const. 
&I the approximati~ considered here the effect of the electric field on particles 

is similar, for instance, to that of gravity. Since the quantity a attains finite valu- 

es, it is necessary to take into account the dependence 9 = I& (a). The specifica- 
tion of function I# (a) defines a “mediated” interaction of particles through the 
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carrier medium. Below, we use for function up the following expressions: 

I”: 11 = 1, 2”: $ z (1 -CL)+, 3”: ‘II, = (1 - a / a,)--“, I?.)0 (3.1) 

In version 1” the mediated interaction of particles is not taken into account and 
moving particles are subjected to the Stokes law. Version 2’ is borrowed from the 
fluidized bed theory [l]. 

Version 3” is a modification of 2”, with a, representing the maximum volume 
concentration of particles under conditions of tight packing. The system of Eqs. (1.1) 
-(I., 4) reduces to the single first order differential equation 

TW;' = R(w), W (0) =:. wol g =: x i L (3.2) 

R Iw) = _LY+ {- (‘1-b 1) (W -. S)2 + 2c’wz (1 _i- 6 - cso - W), X 

{(w - @a + W’ 

where parameter z is defined by formulas (1.10). We consider the situation when in 
accordance with (1.10) the volume concentration tta of the dispersed phase at the 
initial cross section is small and the particles motion is retarded by the electric field 
E, < 0, fl > 0. 

It follows from (3.2) that N (Wo) < 0 and the velocity of charged particles 
along the E -axis continuously diminishes until the value w = w+, where wf 

is the nearest to 1U = wg positive root of equation R (w) = 0 , is reached. 

If then function fl (10) in the neighborhood of point w = wf is of the form 

R (w) = collrt (20 - W+)nz, n1 >, 1, the value w+ is reached at 5 -+ cc, 

i. e, there is an “asymptotic” section of motion, The quantity W' must be close to 

zero, since if it were w+ = 0 (l), we would have CL+ = 6 1 w” = o (1) and 

the flow throughout the region would be defined approximately by CYW ZZG 0 for which 
function R (w) vanishes when w < 0. 

We assume n to be an integer and seek the root wi in the form of series W+ = 

A6i_.... For the det~~nation of A we obtain the algebraic equation 

whose solution for cases 1” and 2” (a, = 1) is of the form 

(3.3) 

(3.4) 

The properties of flow along the asymptotic section (denoted by the superscript +) 
are defined by formulas 

a’=++O(6), w+==d6+0(&*), +=%-f-O(1) (3.5) 
s 
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z&f 
- = & + t? (iTI), u 

-$- = A+ + 0 (6) 

p'L + L-1 PSO Ai+n 

- p”.Y = p”z (‘4 - 1)2’% 

The asymptotic solution is characterized by the finite volume concentration cz* 

of particles, high relative phase density (of order S-l) , the carrier phase velocity 

u+ > U (since A > j), density pi < pO , and considerable pressure grad- 
ient necessary for obtaining the considered flow. 

With strong electric fields the quantity ai approaches unity, as implied by(3.5), 
but in reality it cannot exceed the quantity a, = n,/ 6, i.e. the concentration of 

closely packed particles. The possibility of occurrence of a solution with o > am 
is due to the imperfection of the “mediated’ interaction law in 2’. That imperfection 

is eliminated in the law 3”. The dependence of the quantity (A a&-* on 1 _t n for vari- 
OUS n, determined by the solution of Eq. (3.3), is shown in Fig.1. Since the quant- 

ity A is greater than 1 / u, for all n , hence a+ < a,. 

Thus in the first approximation the flow consists of two sections. Along the first 

of these the variation of parameters is defined by formulas (2.2); its length is close to 

E’ 0 I and the particle velocity along it decreases virtually to zero. Along the 

second asymptotic section the parameters of the two-phase stream are defined by form- 

ulas (3.5). A narrow transition zone of length of order of 6 lies between these sect- 
ions. Becuase of this, that zone can be replaced by a discontinuity surface along which 
parameters CC* U, p abruptly change from a = 0, 
a+, u’; pf, 

u = u, p = pa to 
and the velocity W is close to zero. 

Figure 2 shows the variation of velocities 2~‘ and ws = u I U of the dispersed 

and carrier phase and of volume concentrations a along the stream, obtained by 

integrating the system of Eqs, (1.1) - (1.4) for 

r = 1, w* ZZ 1, a, = 6 = 3.10-4, y = 3.10-7, I) = 2 

with the drag law 3” (n = 3). The transition zone is shown there in larger scale for 
the same parameter valnes. 

The above analysis can be extended to the case when the external retarding electric 
field is not uniform - q == q (z). Let y be a parameter of second (or higher) 

order of smallness with respect to 6. (This condition is satisfied in practice owing 

to the inequality p” I p,” < 1 ). It is then possible to neglect the inertia term in 

Eq. (3.2) for the region in which w - 6, and determine w using the condition 

R (@ - 0. The approximate solution of the problem is derived in this case as 

follows. First, we integrate Eq. (2.1) for J%‘O = E (z) and determine the cross sec- 

tion r. * in which velocity uI vanishes. Flow parameters in region z > x0+ are 

determined using formulas (3.5) in which A = A (LX) is determined by the solution 

of Eq. (3,3) for ?j = 3 (a$ The cross section at x = aof is the discon~nuity 

surface of parameters a, r.& and p. 

in many problems of gasdynamics of multiphase media with the condition C$ < 
1 satisfied the approximation a z 0 is used for describing the whole flow region 

[S]. The derived above solution shows that in spite of tfulfilment ofj condition 

a, < 1 the allowance for the volume concentration of particles may result in 
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Fig. 1 Fig. 2 

e.SXSttally different flow characteristics in the region of finite dimensions beyond the 
cross section x = xef. 

4, Model az=O,@,/p~l,N~ 1. The two-phase flow is defin- 
ed by the system of equations 

&US ’ = kl# (U - u,) + xl% (4.1) 
psn, = psouso, E’ = 4r~, 
u,(O) = uBo, E (0) = 

The 
arrows indicate the direction of increasing x. 

It follows from Fig, 3 that, as in the case considered in Sect. 2, a con~nuous solu- 
tion of system(4.1) exists only in region 0 < x < x+ where u, (x+) == 0. If 
X+ is smaUer than the distance between electrodes, it is possible to derive the com- 

plete solution within the terms of this model in the following three situations: 1) 
presence of a ‘“sink” of charged _particles at cross section x2*+ 
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In the case of situation 3 the system of 
equations that defines the “direct” and 

“reverse” motions of charged particles with 
phase velocities us and U, and densities 

ps and & in the region 0 < x < x,+, 
and the equations for the electric field in 

the region x > x* + are of the form 

Fig, 3 

r&Y’ = k$ (U - n,) + x.K P&s - PSOUSO 
(4.2) 

WS3 = k$ (U - %) + XE, %v* = --P&s0 

E’ = 4n3c (pg + R,) 
u, (0) = use, u, (z*’ - 0) = 0, v, (x*’ - 0) = 0 

E (0) = E. 

(o\<a:<z*+) 

i-6 > x*+, E’ = 0, E (XT*+ + 0) = E+ (4.3) 

when u,+ and Ef in situation 2, and E+ in situation 3 are known from 

solutions of respective systems of equations, the phase velocities and densities of part- 
icles, the electric field, and the positions of discontinuity cross sections z+ and +.+ 
are then determined. 

It follows from considerations of the d~con~uity surface evolution that the numb- 
er of boundary conditions at the discontinuity must be five. There are two discontinuit- 

ies propagating at infinite velocity from the discontinuity of the “electrostatic” pertur- 
bation, and two perturbations propagating downstream of the discontinuity, in which 
the particle density and velocity change. 

These conditions (and u+ and E+) are to be determined from conditions of 

c onservation at the ~con~ui~ and the analysis of its structure. By using various 
structural mechanisms it is possible to obtained different boundary conditions. One 

of such mechanisms is considered in Sect. 5 on the basis of an investigation of flow 
with finite volume concentration of particles and the presence of induced electric fields. 

5. Model a#=O,iV- 1. The distribution of quantities W, w, = U / 

U, a, e = xj? I AGUE in the zone of low velocities w and abrupt change of the 

remaining parameters is shown in Fig. 4. They were obtained by integrating the system 

of Eqs. (1.1) -(l. 6) under conditions 

7= % = 1, 010 = 3.10-4, y = 3 * 10-7, p = pm 4xLx2 / (kU) = 

3, e. =xEo/ (kU) =-44.5 

and function 9 confor~g to formula (3.1) (n = 3). 
There is a section (zone G) of finite length where the dispersed phase velocity is 

low and the volume concentration a considerable. The size of zone G which is of 
the order of 01~ depends on the problem parameters. The finiteness of zone G is 
related to the effect of electrostatic repulsion of charged particles, which in the 
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Poisson equation for the induced electric field is taken into account. 

Fig. 4 Fig. 5 

The considered flow is characterized by a thin layer of considerable concentration 
of charged particles. The electric field increases abruptly in that zone. The presence 
of induced electric field (when a =#= 0) displaces the cross section of minimal part- 
icle velocity upstream, decreases the magnitude of that minimum, and further increase 
of particle velocity beyond the indicated cross section. 

Zone G may be considered as the structural. zone of discontinuity which must be 
introduced when solving the problem in the a za 0 approximation. As shown by 
calculations, this zone consists of two sections: region o1 of abrupt increase of a, 
and W, the order of magnitude of whose length is that of 6, and of region 0s 
of more smooth variation of parameters in which parameters a and W, decrease to 
their ‘*asymptotic” values a = 0 and W, = 1. 

The inv~tiga~o~ described in Sect. 3 had shown that in the zone of low particle 
velocities (to which the zone 0s belongs) the motion of particles can be defined in 
an I’ inertia-free” approximation. The particle velocity is then defined as fallows: 

w z A& A =I A (E) = (-- ‘)’ ’ @+” %E 
(_ e)’ i i7-) _ 1 ’ e-kU (5.1) 
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where the formula for A is obtained for tl m= 1 and the law of resistance 2*. When 
a,<*, parameter A is determined by the solution of Eq. (3.3). 

The electric field distribution in the zone of o2 is defined by the equation (see 

(1.5) and(3.5)) 

de / d5 rv 1 J (A@ (5*2) 

The ~ymptotic exist from the zone of ti, takes place as de / d!$ + 0 and, 
consequently, A-too. As d-t 00, we have in accordance with (5.1) or 

(3.3) -e-+1 or E -+ -&% / x , respectively. Note that this condition 
coincides with the ~ppl~en~~ condition for field E at the discontinuity surface 
in “classical” electro-gasdynamics, when the inertia of charged particles is neglected 

E61. 
Moreover, in conformity with the first of relations (5. J.), velocity ru in zone G 

is a small quantity of order S, hence it is necessary to set w- = 0, w4 = 0 
at the structural zone entry and exit when a-to. 

Thus at the discontinuity surface which replaces zone G the relations 

U.3 -I + 

u+Z+ 
= 0, (p- = (p+, pgu, == f&+2&,+ (5.3) 
= 0 (b - xa) 

are satisfied, 
The third of conditions (5.3) for the electric field potential p = -E’ is 

implied by the continuity of the electric field tangential component, and the fourth 
by the continuity of the dispersed phase mass stream. 

Results of numerical integration of the system of ~qs, (4.1) which define the flow 
of medium in the a z 0 approxi~tion in the presence of the ~scontinuity surface 
of parameters (5.3) (situation 2 in Sect.4) are shown in Fig. 5 by dotted lines. 

The continuous lines correspond to the solution of the system of Eqs. (1.1) -( 1.6) 
whose particulars in the structural zone are shown in Fig, 4. The dash lines corres- 
pond to the numerical integration of E&. (4.1) with the first four conditions of(5.3) 
and the use of the formal condition E+ = m > - U i b = m*. As expected, the 
discrepancy between the exact and the approximate solutions is minimal when m = 
m*. 

The authors thank G. G. Chernyi and G. A. Liubimov for valuable discussions. 
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